130 | 0 | 25 |
下载次数 | 被引频次 | 阅读次数 |
丛生盔形珊瑚是中国南海岛礁造礁珊瑚的代表性物种。根据其刺丝囊形态与线粒体基因组CYTB-ND2基因间区插入/缺失(indel)的基因型,丛生盔形珊瑚可分为S和H两种形态型,且二者的遗传和生态表型有明显的分化。本研究通过挖掘丛生盔形珊瑚编码蛋白的转录本序列的微卫星资源,分离和鉴定了11个在两种形态型中均能稳定而均衡扩增的EST-SSR分子标记,并分别在一个S群体(n=16)和一个H群体(n=31)中进行检测和验证。这11个标记均呈现多态性,在S群体,其等位基因数为3~8个(平均4.8±1.9个),观测杂合度(HO)为0.06~0.92 (0.55±0.26),期望杂合度(HE)为0.24~0.83 (0.40±0.27);在H群体,其等位基因数为2~9个(4.5±2.1),观测杂合度(HO)为0.17~1.00 (0.70±0.15),期望杂合度(HE)为0.46~0.86 (0.62±0.19)。仅一个位点(Gf-E24)因存在无效等位基因,在H群体中偏离哈迪-温伯格平衡。
Abstract:Galaxea fascicularis is a representative species of reef-building coral in the South China Sea.Based on the nematocyst morphology and the indel genotype of CYTB-ND2 in mitochondrial genome,G.fascicularis can be divided into two morphotypes:S and H,and there is significant differentiation in the genetic and ecological phenotypes between these two morphotypes.By mining microsatellite resources from the transcriptome sequences,we developed 11 SSR markers that could be used in both morphotypes,and tested and validated them in one S population (n=16) and one H population (n=31),respectively.All the 11markers showed polymorphism.In S population,the number of alleles ranged from 3 to 8 (mean 4.8±1.9),the observed heterozygosity (HO) ranged from 0.06 to 0.92 (0.55±0.26),and the expected heterozygosity (HE)ranged from 0.24 to 0.83 (0.40±0.27).In H population,the number of alleles were 2~9 (4.5±2.1),the observed heterozygosity (HO) was 0.17~1.00 (0.70±0.15),and the expected heterozygosity (HE) was 0.46~0.86 (0.62±0.19).Only one locus (Gf-E24) deviated from the Hardy-Weinberg equilibrium in H population,probably due to the presence of null allele.
[1]BIRKELAND C.Coral Reefs in the Anthropocene[M].Dordrecht:Springer,2015.
[2]HUGHES T P,ANDERSON K D,CONNOLLY S R,et al.Spatial and temporal patterns of mass bleaching of corals in the Anthropocene[J].Science,2018,359(6371):80-83.
[3]HOEGH-GULDBERG O,MUMBY P J,HOOTEN A J,et al.Coral reefs under rapid climate change and ocean acidification[J].Science,2007,318(5857):1737-1742.
[4]BAIRD A H,MARSHALL P A.Mortality,growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef[J].Marine Ecology Progress Series,2002,237:133-141.
[5]HOU J,XU T,SU D J,et al.RNA-Seq reveals extensive transcriptional response to heat stress in the stony coral Galaxea fascicularis[J].Frontiers in Genetics,2018,9:37.
[6]HUANG W,CHEN Y M,WU Q,et al.Reduced genetic diversity and restricted gene flow of broadcast-spawning coral Galaxea fascicularis in the South China Sea reveals potential degradation under environmental change[J].Marine Pollution Bulletin,2023,193:115147.
[7]黄晖,陈竹,黄林韬.中国珊瑚礁状况报告(2010-2019)[M].北京:海洋出版社,2021.
[8]HIDAKA M.Use of nematocyst morphology for taxonomy of some related species of scleractinian corals[J].Galaxea,1992,11:21-28.
[9]WATANABE T,NISHIDA M,WATANABE K,et al.Polymorphism in nucleotide sequence of mitochondrial intergenic region in scleractinian coral (Galaxea fascicularis)[J].Marine Biotechnology,2005,7(1):33-39.
[10]陆芷滢.我国西沙造礁石珊瑚的形态统计分类学研究[D].海口:海南大学,2022.
[11]TóTH G,GáSPáRI Z,JURKA J.Microsatellites in different eukaryotic genomes:survey and analysis[J].Genome Research,2000,10(7):967-981.
[12]WANG Y,WANG A M,GUO X M.Development and characterization of polymorphic microsatellite markers for the northern quahog Mercenaria mercenaria (Linnaeus,1758)[J].Journal of Shellfish Research,2010,29(1):77-82.
[13]SACKVILLE HAMILTON N R,SCHMID B,HARPER J L.Life-history concepts and the population biology of clonal organisms[J].Proceedings of the Royal Society B:Biological Sciences,1987,232(1266):35-57.
[14]JACKSON J B C,COATES A G.Life cycles and evolution of clonal (modular) animals[J].Philosophical Transactions of the Royal Society B:Biological Sciences,1986,313(1159):7-22.
[15]HUGHES R N.The functional ecology of clonal animals[J].Functional Ecology,1987,1(1):63-69.
[16]LIU S Y V,DAI C F,FAN T Y,et al.Cloning and characterization of Microsatellite loci in a gorgonian coral,Junceella juncea (Anthozoa;Octocorallia;Ellisellidae) and its application in clonal genotyping[J].Marine Biotechnology,2005,7(1):26-32.
[17]PRITCHARD J K,STEPHENS M,DONNELLY P.Inference of population structure using multilocus genotype data[J].Genetics,2000,155(2):945-959.
[18]POLATO N R,CONCEPCION G T,TOONEN R J,et al.Isolation by distance across the Hawaiian Archipelago in the reefbuilding coral Porites lobata[J].Molecular Ecology,2010,19(21):4661-4677.
[19]NAKAJIMA Y,SHINZATO C,SATOH N,et al.Novel polymorphic microsatellite markers reveal genetic differentiation between two sympatric types of Galaxea fascicularis[J].PLoS One,2015,10(7):e0130176.
[20]NAKAJIMA Y,ZAYASU Y,SHINZATO C,et al.Genetic differentiation and connectivity of morphological types of the broadcast-spawning coral Galaxea fascicularis in the Nansei Islands,Japan[J].Ecology and Evolution,2016,6(5):1457-1469.
[21]GéLIN P,POSTAIRE B,FAUVELOT C,et al.Reevaluating species number,distribution and endemism of the coral genus Pocillopora Lamarck,1816 using species delimitation methods and microsatellites[J].Molecular Phylogenetics and Evolution,2017,109:430-446.
[22]李福宇,陈丹丹,李元超,等.澄黄滨珊瑚微卫星标记的开发[J].基因组学与应用生物学,2021,40(7/8):2513-2521.
[23]WANG J,CHEN J Q,WANG S Y,et al.Monoclonal culture and characterization of symbiodiniaceae C1 strain from the scleractinian coral Galaxea fascicularis[J].Frontiers in Physiology,2021,11:621111.
[24]SCHUELKE M.An economic method for the fluorescent labeling of PCR fragments[J].Nature Biotechnology,2000,18(2):233-234.
[25]RAYMOND M,ROUSSET F.An exact test for population differentiation[J].Evolution,1995,49(6):1280-1283.
[26]RICE W R.Analyzing tables of statistical tests[J].Evolution,1989,43(1):223-225.
[27]EXCOFFIER L,LAVAL G,SCHNEIDER S.Arlequin (version 3.0):an integrated software package for population genetics data analysis[J].Evolutionary Bioinformatics,2005,1:47-50.
[28]VAN OOSTERHOUT C,HUTCHINSON W F,WILLS D P M,et al.MICRO‐CHECKER:software for identifying and correcting genotyping errors in microsatellite data[J].Molecular Ecology Notes,2004,4(3):535-538.
[29]PEAKALL R,SMOUSE P E.Genalex 6:genetic analysis in excel.Population genetic software for teaching and research[J].Molecular Ecology Notes,2006,6(1):288-295.
[30]WEPFER P H,NAKAJIMA Y,SUTTHACHEEP M,et al.Evolutionary biogeography of the reef-building coral genus Galaxea across the Indo-Pacific ocean[J].Molecular Phylogenetics and Evolution,2020,151:106905.
[31]CHEN D D,WANG D R,ZHU J T,et al.Identification and characterization of microsatellite markers for scleractinian coral Galaxea fascicularis and its symbiotic zooxanthellae[J].Conservation Genetics Resources,2013,5(3):741-743.
[32]QIU Y,HUANG X Z,LU H,et al.Development of EST-derived microsatellite markers in the pearl oyster Pinctada martensii(Dunker) for genetic resource monitoring[J].Conservation Genetics Resources,2013,5(2):401-403.
[33]QIU Y,LU H,ZHU J T,et al.Characterization of novel EST-SSR markers and their correlations with growth and nacreous secretion traits in the pearl oyster Pinctada martensii (Dunker)[J].Aquaculture,2014,420-421:S92-S97.
[34]LIN S J,CHENG S F,SONG B,et al.The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis[J].Science,2015,350(6261):691-694.
[35]SPECTOR D L.Dinoflagellate nuclei[M]//SPECTOR D L.Dinoflagellates.London:Academic Press,1984:107-147.
[36]CARLON D B,LIPPéC.Fifteen new microsatellite markers for the reef coral Favia fragum and a new Symbiodinium microsatellite[J].Molecular Ecology Resources,2008,8(4):870-873.
[37]苏定佳.海南岛丛生盔形珊瑚(Galaxea fascicularis)的遗传结构和连通性[D].海口:海南大学,2017.
[38]ABE M,WATANABE T,HAYAKAWA H,et al.Breeding experiments of hermatypic coral Galaxea fascicularis:partial reproductive isolation between colonies of different nematocyst types and enhancement of fertilization success by presence of parental colonies[J].Fisheries Science,2008,74(6):1342-1344.
基本信息:
DOI:10.15886/j.cnki.hdxbzkb.2024031701
中图分类号:S917.4
引用信息:
[1]卢章旺,李福宇,廖婷馨等.丛生盔形珊瑚转录组微卫星标记的分离和鉴定[J].海南大学学报(自然科学版中英文),2025,43(01):25-32.DOI:10.15886/j.cnki.hdxbzkb.2024031701.
基金信息:
国家科技基础资源调查专项课题(2022FY100604); 国家自然科学基金项目(41376174)