641 | 12 | 21 |
下载次数 | 被引频次 | 阅读次数 |
本研究以柑橘为研究对象,对柑橘土壤pH、电导率、有机质含量、铵态氮含量、速效磷含量、速效钾含量、葡聚糖苷酶活性和多酚氧化酶活性进行了测定与分析,阐述了以耐盐性芽孢杆菌制作的菌肥对盐胁迫下柑橘土壤理化性质和酶活的影响,分析了土壤理化性质与酶活的相关关系.结果表明:在盐胁迫下,当菌肥和复合肥配合施加时,土壤铵态氮、速效磷和有机质的含量以及葡聚糖苷酶的活性较高,而土壤的电导率较低,有利于柑橘的生长.主成分分析表明:配合施加菌肥和复合肥的处理其效果较好,效果持续时间较长.从不同时间采集的土壤的综合评价来看,7月22日单独施加复合肥的处理,其综合得分最高为1.31.其他三个采样时间的菌肥和复合肥配合施加的处理的综合得分最高;复合肥单独施加的处理其综合得分持续下降.Spearman相关性分析和回归分析表明,在盐胁迫下,土壤电导率与速效磷含量呈极显著正相关;电导率与速效钾含量呈极显著正相关.
Abstract:In the report, citrus were used as research objects to determine the pH, conductivity, organic substances content, ammonium nitrogen, available phosphorus, available potassium and polyphenol oxidase of citrus soil. The effects of application of microbial fertilizer from salt tolerant bacillus on physicochemical properties and enzyme activities in citrus soil under salt stress were determined. The correlation between soil physical and chemical properties and enzyme activity was analyzed. The results showed that under salt stress, the contents of ammonium nitrogen, available phosphorus, organic matter and glucosidase in soil were higher, and the soil conductivity was lower. And the principal component analysis results showed that the combined treatment effect of bacterial fertilizer and compound fertilizer was better and the lasting effect was longer. From the comprehensive evaluation of soil collected at different time points, the highest comprehensive score of compound fertilizer treatment was 1.31 on July 22. The combined scores of the fertilizer and compound fertilizer at the other three sampling times were the highest, while the combined scores of compound fertilizer alone continued to decrease. The results of Spearman correlation analysis and regression analysis showed that under salt stress, the soil conductivity was significantly positively correlated with available phosphorus content. The conductivity was positively correlated with the content of available potassium.
[1] 周登博,井涛,谭昕,等.施用拮抗菌饼肥发酵液和土壤消毒剂对香蕉枯萎病病区土壤细菌群落的影响[J].微生物学报,2013,53(8):842-851.
[2] 文少白,张桂花,李勤奋,等.五种菌对香蕉茎秆纤维素降解能力比较及菌群构建[J].环境科学与技术,2011,34(3):46-49.
[3] 祁娟,姚拓,白小明,等.复合菌肥替代部分磷肥对苜蓿草地生产力及土壤肥力的影响[J].草业学报,2017,26(10):118-128.
[4] 徐忠山,杨彦明,陈晓晶,等.菌肥对混播牧草土壤酶活性及微生物的影响[J].中国土壤与肥料,2018(6):77-83.
[5] Sosnowski J,Jankowski K,Vidican R,et al.Number of microorganisms in the soil cultivated with legume-grass mixtures supplied with phytohormones and nitrogen[J].Notulae Scientia Biologicae,2014,6(4):498-504.
[6] Pera A,Vallini G,Sireno I,et al.Effect of organic matter on rhizosphere microorganisms and root development of Sorghum plants in two different soils[J].Plant & Soil,1983,74(1):3-18.
[7] Vandana U K,Chopra A,Bhattacharjee S,et al.Microbial Biofertilizer:A Potential Tool for Sustainable Agriculture[M].Singapore:Springer,2017:25-52.
[8] Powlson D S,Hirsch P R,Brookes P C.The role of soil microorganisms in soil organic matter conservation in the tropics[J].Nutrient Cycling in Agroecosystems,2001,61(1-2):41-51.
[9] Guo R,Shi L,Yang Y.Germination,growth,osmotic adjustment and ionic balance of wheat in response to saline and alkaline stresses[J].Soil Science and Plant Nutrition,2009,55(5):667-679.
[10] 迟春明,王志春.苏打盐渍土草原植被群落分布与土壤理化性质相互关系[J].生态学杂志,2013,32(9):2245-2249.
[11] Zhao J,Liu J,Liang H,et al.Manipulation of the rhizosphere microbial community through application of a new bio-organic fertilizer improves watermelon quality and health[J].PLOS ONE,2018,13:e192967.
[12] Cui X,Zhang Y,Gao J,et al.Long-term combined application of manure and chemical fertilizer sustained higher nutrient status and rhizospheric bacterial diversity in reddish paddy soil of Central South China[J].Scientific Reports,2018.
[13] Sun W L,Zhao Y G,Yang M.Microbial fertilizer improving the soil nutrients and growth of reed in degraded wetland[J].IOP Conference Series:Earth and Environmental Science,2017,69:25-52.
[14] Dubey K,Dubey K,Pandey A,et al.Microbial Biofertilizer Interventions in Augmenting Agroforestry[M]//2017:421-442.
[15] 陈江华,崔雪婧,程家森,等.我国主要产区柑橘采后病害发生动态[J].华中农业大学学报,2019,38(6):92-97.
[16] 屈娅娜,於丙军.氯离子通道抑制剂对盐胁迫下野生和栽培大豆幼苗离子含量等生理指标的影响[J].南京农业大学学报,2008(2):17-21.
[17] 魏清江,冯芳芳,辜青青.柑橘盐胁迫响应及耐盐机制研究进展[J].果树学报,2015,32(1):136-141.
[18] Zekri M,Parsons L R.Calcium influences growth and leaf mineral concentration of citrus under saline conditions[J].HortScience:a Publication of the American Society for Horticultural Science,1990,25(7):784-786.
[19] Parida A,Das A.Salt tolerance and salinity effects on plants:a review[J].Ecotoxicology and Environmental Safety,2005,60:324-349.
[20] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
[21] 赵雅峰,陶晶,武占省,等.组合生防菌与解盐促生菌复配对棉花的促生效应[J].中国农业科学,2010,43(22):4754-4760.
[22] 林先贵.土壤微生物研究原理与方法[M].北京:高等教育出版社,2010.
[23] 王彬彬,林启美,陈源泉,等.微池板比色法在多酚氧化酶和β葡萄糖苷酶研究中的应用[J].土壤学报,2012,49(4):773-779.
[24] 郝建朝,吴沿友,连宾,等.土壤多酚氧化酶性质研究及意义[J].土壤通报,2006(3):470-474.
[25] 朱浩,刘珂欣,刘维维,等.极端耐盐碱菌株的筛选及其菌肥对盐碱条件下小麦生长和土壤环境的影响[J].应用生态学报,2019,30(7):2338-2344.
[26] 陈淋.解淀粉芽孢杆菌SQR9增强植物耐盐能力的机制研究[D].南京:南京农业大学,2016.
[27] 朱利林.香蕉枯萎病拮抗芽孢杆菌的筛选及其定殖特性研究[D].海口:海南大学,2012.
[28] Zhang P,Wang Z,Sun Y.Effects of microbial fertilizer on growth characteristics of facility tomato and chemical properties of acidic soil[J].Agricultural Biotechnology,2018,7(2):55-57.
[29] 祁娟,姚拓,白小明,等.复合菌肥替代部分磷肥对苜蓿草地生产力及土壤肥力的影响[J].草业学报,2017,26(10):118-128.
[30] Malik A A,Jeremy P,Buckeridge K M,et al.Land use driven change in soil pH affects microbial carbon cycling processes[J].Nature Communications,2018,9(1):3591-3601.
[31] 沙聪,王木兰,姜玥璐,等.红树林土壤pH和其他土壤理化性质之间的相互作用[J].科学通报,2018,63(26):2745-2756.
[32] Dinesh Adhikari T J T K.Relationship among phosphorus circulation activity,bacterial biomass,pH,and mineral concentration in agricultural soil[J].Microorganisms,2017,5(4):79-83.
[33] 崔楠,吕光辉,刘晓星,等.胡杨、梭梭群落土壤理化性质及其相互关系[J].干旱区研究,2015,32(3):476-482.
基本信息:
DOI:10.15886/j.cnki.hdxbzkb.2020.0031
中图分类号:S666;S153
引用信息:
[1]邓大豪,李得铭,翟子翔等.盐胁迫下菌肥对柑橘土壤理化性质和酶活的影响[J].海南大学学报(自然科学版),2020,38(03):226-232.DOI:10.15886/j.cnki.hdxbzkb.2020.0031.
基金信息:
海南省自然科学基金创新研究团队项目(2017YFD020060206);; 2019年海南省基础与应用基础研究计划(自然科学领域)高层次人才项目(2019RC283);; 国家重点研发计划(2017YFD020060206)