nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv qikanlogo popupnotification paper paperNew
2025, 01, v.43 67-72
Kneser图及其导出子图的顶点可分解性质
基金项目(Foundation): 国家自然科学基金项目(12101165); 海南省自然科学基金项目(423RC429)
邮箱(Email): amliu@hainanu.edu.cn;
DOI: 10.15886/j.cnki.hdxbzkb.2024042801
摘要:

Kneser图是十分重要的一类图,许多关于集合的计数以及计算问题可以转换为此类图中的问题加以探讨,在计算机科学、图论、拓扑中都有重要应用。从代数组合方面出发研究Kneser图及其导出子图Schrijver图和交错图的组合代数结构,并完整地刻画了其顶点可分解性质以及Cohen-Macaulay性质。

Abstract:

Kneser graph is a very important kind of graph. Many problems related to counting and computing sets can be transformed into the problems in this kind of graph. It is widely used in computer science, graph theory, and topology. In the report, in algebraic combination respect, the combinatorial algebraic structures of Kneser graphs and their induced subgraphs, including Schrijver graphs and interlacing graphs were studied,and their vertex decomposability and Cohen-Macaulay properties were fully characterized.

参考文献

[1]STANLEY R P.The upper bound conjecture and Cohen-Macaulay rings[J].Studies in Applied Mathematics,1975,54(2):135-142.

[2]VILLARREAL R H.Cohen-Macaulay graphs[J].Manuscripta Mathematica,1990,66(1):277-293.

[3]BJ?RNER A,WACHS M L.Shellable nonpure complexes and Posets.Ⅰ[J].Transactions of the American Mathematical Society,1996,348(4):1299-1327.

[4]BJ?RNER A,WACHS M L.Shellable nonpure complexes and Posets.Ⅱ[J].Transactions of the American Mathematical Society,1997,349(10):3945-3975.

[5]WACHS M L.Obstructions to shellability[J].Discrete&Computational Geometry,1999,22(1):95-103.

[6]WOODROOFE R.Vertex decomposable graphs and obstructions to shellability[J].Proceedings of the American Mathematical Society,2009,137(10):3235-3246.

[7]COOK D,NAGEL U.Cohen-Macaulay graphs and face vectors of flag complexes[J].SIAM Journal on Discrete Mathematics,2012,26(1):89-101.

[8]FRANCISCO C A,HàH T.Whiskers and sequentially Cohen-Macaulay graphs[J].Journal of Combinatorial Theory,Series A,2008,115(2):304-316.

[9]FRANCISCO C A,HàH T,VAN TUYL A.Splittings of monomial ideals[J].Proceedings of the American Mathematical Society,2009,137(10):3271-3282.

[10]FRANCISCO C A,VAN TUYL A.Sequentially Cohen-Macaulay edge ideals[J].Proceedings of the American Mathematical Society,2007,135(8):2327-2337.

[11]刘阿明.图的边理想以及Cohen-Macaulay性质[D].上海:上海交通大学,2019.

[12]LIU A M,WU T S.Boolean graphs are Cohen-Macaulay[J].Communications in Algebra,2018,46(10):4498-4510.

[13]LIU A M,WU T S.A construction of sequentially Cohen-Macaulay graphs[J].Algebra Colloquium,2021,28(3):399-414.

[14]GUO J,LI M Y,WU T S.A new view toward vertex decomposable graphs[J].Discrete Mathematics,2022,345(9):112953.

[15]PROVAN J S,BILLERA L J.Decompositions of simplicial complexes related to diameters of convex polyhedra[J].Mathematics of Operations Research,1980,5(4):576-594.

[16]TZANAKI E.Polygon dissections and some generalizations of cluster complexes[J].Journal of Combinatorial Theory,Series A,2006,113(6):1189-1198.

基本信息:

DOI:10.15886/j.cnki.hdxbzkb.2024042801

中图分类号:O157.5

引用信息:

[1]周思荣,刘阿明.Kneser图及其导出子图的顶点可分解性质[J].海南大学学报(自然科学版中英文),2025,43(01):67-72.DOI:10.15886/j.cnki.hdxbzkb.2024042801.

基金信息:

国家自然科学基金项目(12101165); 海南省自然科学基金项目(423RC429)

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文
检 索 高级检索