205 | 3 | 5 |
下载次数 | 被引频次 | 阅读次数 |
针对大跨度悬索桥吊杆的风致内共振问题,探索了高性能CFRP材料应用于悬索桥缆索系统后的风致响应减振效果.探索性地设计了主跨2 000 m且缆索材料各异的悬索桥模型,根据CFRP主缆、钢主缆、CFRP吊索和钢吊索4种基本构件组合成4种缆索承重方案,分析了4种缆索承重方案的自振特性,并进行脉动风场模拟,在此基础上引入时域抖振力模型后得到结构风致响应的数值模拟结果 .研究结果表明:采用钢主缆钢吊杆的情况下,许多长吊杆存在明显的共振现象;主缆材料不变,将吊索材料替换为CFRP后,共振现象完全消失;采用CFRP主缆与钢吊索组合时,共振现象仍然存在,且吊杆的共振程度与钢主缆钢吊索方案类似;采用CFRP主缆与CFRP吊杆方案时,吊杆共振现象消除,其响应幅值甚至小于主缆的激励源幅值. 4种方案的对比表明,主缆材料对共振响应的影响不明显,用CFRP材料提高吊杆的自振频率则是消除共振的关键.
Abstract:In the report, aiming at the wind-induced internal resonances hangers at long-span suspension bridges, the vibration-reduction effects were investigated in terms of application of high-performance CFRP material to the cable-supporting system. A suspension bridge with a main span length of 2 000 m was designed tentatively. Four kinds of cable-supporting system were combined according to 4 basic components including CFRP main cable, steel cable, CFRP hanger, and steel hanger. The natural vibration characteristics were analyzed and the fluctuating wind fields are simulated. Based on these data, a time-domain buffeting model was introduced and the wind-induced structural responses were obtained via numerical simulations. The results showed that when the scheme of steel main cables and hangers was used, many long hangers experience obvious resonant responses. Keeping steel for main cables, all resonant responses disappear when steel hangers are replaced with CFRP ones. When the scheme of CFRP main cables and steel hangers is used, the resonant phenomena still exist, of which the characteristics are similar to those of the all-steel scheme. When the all-CFRP scheme are used, all resonant phenomena disappear, whose responses are even smaller than the source amplitudes passed from the main cables. The compare analysis results suggested that to eliminate the resonance, the key point is promoting the natural frequencies by applying CFRP material to the hangers, instead of to the main cables.
[1]刘明虎,强士中,,徐国平,等.超大跨碳纤维增强塑料(CFRP)主缆悬索桥研究与原型设计[J].公路交通科技,2014,31(2):60-68.
[2]吴肖波.悬索桥缆索系统风致内共振研究[D].长沙:湖南大学,2015.
[3]周帅,罗桂军,牛华伟,等.桥梁吊杆典型风致振动幅值响应质量阻尼效应研究[J].振动与冲击,2021,40(18):63-69.
[4] Costa A P, Martins J A C,Branco F,et al. Oscillations of bridge stay cables induced by periodic motions of deck and/or towers[J]. Journal of Engineering Mechanics,1996,122(7):613-622.
[5] Royer-Carfagni G F. Parametric-resonance-induced cable vibrations in network cable-stayed bridges. A continuum approach[J]. Journal of Sound and Vibration, 2003, 262(5):1191-1222.
[6]项海帆,葛耀君.悬索桥跨径的空气动力极限[J].土木工程学报,2005(1):60-70.
[7]陈政清,李寿英,邓羊晨,等.桥梁长索结构风致振动研究新进展[J].湖南大学学报(自然科学版),2022, 49(5):1-8.
[8] Zhang Z T, Wu X B, Chen Z Q, et al. Mechanism of hanger oscillation at suspension bridges:buffeting-induced resonance[J]. Journal of Bridge Engineering, 2016, 21(3):10. 1061/(ASCE)BE. 1943-5592. 0000834.
[9] Zhang Z, Zeng J, Zhu L, et al. Buffeting-induced resonances of hangers at a long-span suspension bridge and mitigation countermeasure[J]. Journal of Bridge Engineering, 2021, 26(9):10. 1061/(ASCE)BE. 1943-5592. 0001769.
[10] Zhang Z, Zhang W. Sensitivity and vibration reduction of buffeting induced resonance of hangers[J]. Wind and Structures,An International Journal, 2017, 25(1):39-61.
[11]费有静,裴小兵.碳纤维复合材料在桥梁工程中的应用[J].新材料产业,2017(12):7-9.
[12]郑宏宇,梅葵花,吕志涛. CFRP缆索体系悬索桥的优势及可行性研究[J].桥梁建设,2006(4):7-10.
[13]张建东,方志.碳纤维复合材料拉索的非线性力学性能[J].计算力学学报,2009,26(5):751-756.
[14]李扬,肖汝诚.大跨度CFRP缆索悬索桥的抗风稳定性能[J].同济大学学报(自然科学版),2012,40(4):499-507.
[15]孙胜江.超大跨CFRP缆索悬索桥力学性能研究[D].西安:长安大学,2013.
[16]郑宏宇,江怀雁,吕志涛,等.大跨CFRP缆索悬索桥成桥静力特性分析[J].中外公路,2013,33(3):78-83.
[17]张志田,吴肖波,葛耀君,等.悬索桥吊杆风致内共振及减振措施初探[J].湖南大学学报(自然科学版),2016,43(1):11-19.
[18]李周.大跨度悬索桥悬吊体系参数振动研究[D].广州:华南理工大学,2013.
基本信息:
DOI:10.15886/j.cnki.hdxbzkb.2023.0011
中图分类号:U441.3;U448.25
引用信息:
[1]乔腾宇,张志田,王震.CFRP材料对两千米级悬索桥缆索系统风致内共振的减振效果[J].海南大学学报(自然科学版),2023,41(01):95-103.DOI:10.15886/j.cnki.hdxbzkb.2023.0011.
基金信息:
国家自然科学基金(51938012,52068020); 海南省自然科学基金(520CXTD433)