nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2024 02 v.42 130-137
不同持水量和氮肥形态对丛枝菌根真菌调节柑橘幼苗生长和氮积累的影响
基金项目(Foundation): 海南省自然科学基金(320RC497); 海南大学科研启动基金(KYQD(ZR)1978)
邮箱(Email): lizhang0214@163.com;
DOI: 10.15886/j.cnki.hdxbzkb.2024.0015
中文作者单位:

海南大学热带作物学院;

摘要(Abstract):

以柑橘幼苗为研究对象,采用分室(分生长室与菌丝室)根箱装置,比较了不同水分处理[60%WFPS(Water-filled pore space);80%WFPS]与两种氮肥形态(NH_4~+;NO_3~-)下,丛枝菌根真菌(CK:无菌丝无根系;AMF:有菌丝无根系;RAMF:有菌丝有根系)对土壤氮含量、植株生物量和氮积累的影响.结果表明:水分水平、氮肥形态和丛枝菌根真菌均显著影响土壤氮含量、柑橘幼苗生物量及植株氮积累量;与60%田间持水量相比,80%田间持水量的土壤硝态氮和总有效氮含量分别降低了26.42%和8.28%,柑橘地上部和总生物量分别显著提高了20.66%和8.93%,柑橘地上部和总氮积累量分别提高了13.57%和6.21%;与添加铵态氮相比,添加硝态氮的柑橘地上部和总氮积累量分别提高了12.59%和5.64%,柑橘地上部和总生物量分别提高了15.68%和9.56%;不同水分和氮形态处理下,AMF均能促进柑橘幼苗生长和植株氮积累;与CK处理相比,AMF处理的地上部和总生物量分别提高了18.57%和15.06%,而RAMF处理分别提高了26.60%和25.48%;AMF处理柑橘地上部和总氮积累量分别较CK处理提高了19.49%和12.88%,RAMF处理分别提高了23.10%和20.10%.因此,不同水分和氮形态下,丛枝菌根真菌与柑橘根系共生均能促进柑橘幼苗生长,提高氮素积累能力.

关键词(KeyWords): 丛枝菌根真菌;铵态氮;硝态氮;土壤水分含量;柑橘;氮积累
参考文献

[1]李香君,弓晋超,李旭旭,等.豆禾混播对丛枝菌根真菌群落及氮素吸收的影响[J].中国草地学报,2023, 45(7):71-80.

[2] Yao Q M, Li Z, Song Y, et al. Community proteogenomics reveals the systemic impact of phosphorus availability on mierobial functions in tropical soil[J]. Nature Ecology&Evolution, 2018, 2(3):499-509.

[3]孔亚丽,秦华,朱春权,等.土壤微生物影响土壤健康的作用机制研究进展[J].土壤学报,2023, 11(12):1-9.

[4] Kuypers M M M, Marchant H K, Kartal B. The microbial nilrogen-cycling network[J]. Nature Reviews Microbiology, 2018,16(5):263-276.

[5] Peri P L, Ladd B, Pepper D A, et al. Carbon(δ13C)and nitrogen(δ15N)stable isotope composition in plant and soil in Southern Patagonia's native forests[J]. Global Change Biology, 2012, 18(1):311-321.

[6] Hawkins H J, Johansen A, George E. Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi[J]. Plant and Soil, 2000, 226(2):275-285.

[7]韦文敬,石兆勇,张梦歌,等.基于数据库的菌根与施肥对草地植物叶片性状影响的分析[J].草业学报,2023, 32(10):104-114.

[8]高明含,李丽丽,杨洪一,等.菌根真菌促进植物氮磷吸收的研究进展[J].黑龙江农业科学,2023(10):126-131.

[9]王倩,李振双,杨富成,等.外生菌根共生对林木氮素吸收的促进作用[J].世界林业研究,2021,34(3):19-24.

[10]王艳芳,刘金钊,李志超,等.丛枝菌根真菌对褐土玉米氮素吸收和土壤N2O排放的影响[J/OL].生态学报,2023(5):1-13.

[11]聂扬眉.乡村振兴下我国柑橘产业发展情况--基于价值链模型的实证[J].中南民族大学学报(自然科学版),2023,42(2):283-288.

[12]陈泉,何锦辉,任杰群,等.重庆垫江柑橘园土壤和叶片养分状况分析[J].中国土壤与肥料,2022, 308(12):92-101.

[13]何堂庆,有机无机肥配施和丛枝菌根真菌对玉米氨素吸收利用和氧化亚氨排放的影响[D].郑州:河南农业大学,2022.

[14]陈冰洁.氮肥形态和丛枝菌根真菌对玉米产量、灌浆期生理特性和籽粒品质的影响[D].郑州:河南农业大学,2022.

[15] Shi J, Wang X, Wang E. Mycorrhizal symbiosis in plant growth and stress adaptation:from genes to ecosystems[J]. Annual Review of Plant Biology, 2023, 74:569-607.

[16] Zhang X, Qiu Y, Gilliam F S, et al. Arbuscular mycorrhizae shift community composition of N-cycling microbes and suppress soil N2O emission[J]. Environmental Science&Technology, 2022, 56(18):13461-13472.

[17] Qiu Y, Jiang Y, Guo L, et al. Shifts in the composition and activities of denitrifiers dominate CO2 stimulation of N2O emissions[J]. Environmental Science and Technology, 2019,53(19):11204-11213.

[18] Heike B, Arjun K. Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants:current knowledge and research gaps[J]. Agronomy-basel, 2015, 2015,5(4):587-612.

[19] Vázquez M, Barea J, Azcón R. Impact of soil nitrogen concentration on Glomus spp.—Sinorhizobium interactions as affecting growth, nitrate reductase activity and protein content of Medicago sativa[J]. Biology&Fertility of Soils, 2001, 34(1):57-63.

[20] Breuillin-Sessoms F, Floss D S, Gomez S K, et al. Suppression of arbuscule degeneration in medicago truncatula phosphate transporter 4 mutants is dependent on the ammonium transporter 2 family protein AMT2;3[J]. Plant Cell, 2015, 27(4):1352-1366.

[21] Wang S, Chen A, Xie K, et al. Functional analysis of the OsNPF4. 5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants[J]. Proceedings of the National Academy of Sciences, 2020, 117(28):16649-16659.

[22] Hawkins H J, George E. Reduced 15N-nitrogen transport through arbuscular mycorrhizal hyphae to Triticum aestivum L. supplied with ammonium vs. nitrate nutrition[J]. Annals of Botany, 2001, 87(3):303-311.

[23] Burke D J, Carrino-Kyker S R. The influence of mycorrhizal fungi on rhizosphere bacterial communities in forests[J]. Forest Microbiology, 2021, 14:257-275.

[24] Bago B, Azcón-Aguilar C. Changes in the rhizospheric pH induced by arbuscular mycorrhiza formation in onion(Allium cepa L.)[J]. Zeitschrift für Pflanzenernhrung und Bodenkunde, 1997, 160(2):333-339.

[25] Horst, Marschner V, Rmheld W, et al. Root-induced changes in the rhizosphere:Importance for the mineral nutrition of plants[J]. Journal of Plant Nutrition and Soil Science, 1986, 149(4):441-456.

基本信息:

DOI:10.15886/j.cnki.hdxbzkb.2024.0015

中图分类号:S666

引用信息:

[1]李京晨,王曙光,郭佩佩等.不同持水量和氮肥形态对丛枝菌根真菌调节柑橘幼苗生长和氮积累的影响[J].海南大学学报(自然科学版),2024,42(02):130-137.DOI:10.15886/j.cnki.hdxbzkb.2024.0015.

基金信息:

海南省自然科学基金(320RC497); 海南大学科研启动基金(KYQD(ZR)1978)

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文
检 索 高级检索